0=2-12100/x^2

Simple and best practice solution for 0=2-12100/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2-12100/x^2 equation:



0=2-12100/x^2
We move all terms to the left:
0-(2-12100/x^2)=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(2-12100/x^2)=0
We get rid of parentheses
12100/x^2-2=0
We multiply all the terms by the denominator
-2*x^2+12100=0
We add all the numbers together, and all the variables
-2x^2+12100=0
a = -2; b = 0; c = +12100;
Δ = b2-4ac
Δ = 02-4·(-2)·12100
Δ = 96800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96800}=\sqrt{48400*2}=\sqrt{48400}*\sqrt{2}=220\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-220\sqrt{2}}{2*-2}=\frac{0-220\sqrt{2}}{-4} =-\frac{220\sqrt{2}}{-4} =-\frac{55\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+220\sqrt{2}}{2*-2}=\frac{0+220\sqrt{2}}{-4} =\frac{220\sqrt{2}}{-4} =\frac{55\sqrt{2}}{-1} $

See similar equations:

| 40x+10x+6x/120=31 | | T=4+4.37s | | -10(2x-2)-4=-6(3x-8)-2x | | (19-y)*10=30 | | 3x-20=2x+3 | | x−5)+8(x−5)=2 | | -175=-5x-4(-6x-14) | | c=4. | | 10x-26=4x-8 | | 3d-18=36 | | 9(x-4)+6=3(x+2) | | 56x/120=31 | | 2x+4x-2=150° | | 0.2x-48=90 | | 38x-1=5(7x-1)+3x+4 | | 9-3(x+1)=x+7 | | 0.13x=0.1066 | | 1=d-5/3 | | 6x+17+3x-10=9x+27 | | 2x(x+3=)2x | | -1=1/3u | | 100*0.6=x*2 | | x=3720/56 | | -9(v+3)=9v+45 | | x-3.98=5.99 | | y=5. | | 4x+6=2x-8* | | x-31=86 | | 8-2(x+4)=6x | | 6.69+x=11.67 | | -7(w=2)=-9w-12 | | 10a=5(a+5) |

Equations solver categories